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+ Steady: time independent.

* The basic flow: the steady flow around the obstacle, stable below the critical
Reynolds number.

* The bifurcating flow: the unsteady flow replacing the basic flow above the critical
Reynolds number.

* z: coordinate along the obstacle axis.

* Uniform: z-independent, within some interval.

» 2D: continuous translational invariance along z.

* 3D: the opposite of 2D.

* Plane wake: the flow around a disk in the plane (x, y) (a mathematical problem).
* For any real number r, int(r) is the highest signed integer lower than .

* Energy: squared amplitude modulus |A|2.
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SELF-ORGANIZATION IN THE 3D WAKES
OF BLUFF BODIES

The wake of elongated biuff bodies is considered as a field of interacting
fluid oscillators, governed by a Ginzburg-Landau equation, with no-oscillation
boundary conditions. In the case of a uniform basic flow, this dynamical reduction
reproduces accurately most 3D features of the real wake at low Reynolds
numbers.

1. Introduction

The wake of an obstacle is a 3D external open flow. “Open” means that the
fluid domain is not bounded. In internal open flows, like the flow in a pipe, the
fluid is surrounded by solid walls; here, on the contrary, solid walls are
surrounded by the fluid. Moreover, | choose to observe the wake in the assumed
inertial frame of the obstacle, focusing on the near wake. A model is provided for
the wake of an elongated, but finite, obstacle: it consists of a Ginzburg-
Landau equation (GL) and no-oscillation boundary conditions; some original
mathematical features of the solutions are demonstrated, and compared with
experiments.

| consider an elongated revolution body: the axis is labeled z, the length L is
much greater than any diameter d(z), and the upstream flow is everywhere
perpendicular to z, with a uniform direction X, and a steady magnitude V_(z) (c.f.
DRA 01). Obstacle vibrations are excluded.

1.1. Survey of experimental results and contradictions

A reasonable idea is that the Navier-Stokes equations for wakes have
steady solutions, with steady boundary conditions. However, because of
hydrodynamical instability, wakes are often unsteady. Bluff bodies are likely to
produce unstable wakes, at least because their blunt shapes strongly distort the
flow.

The wake of a circular cylinder in a uniform upstream flow has been
thoroughly studied for more than one century. When increasing the Reynolds

number Re = V_,d/v above a critical value close to 50, a t-periodic (periodic

function of time t) fluctuation appears, leading to vortex shedding: this is the
Bénard-von Karman instability. In the 1950’s, Tritton (ref. 1) noticed that in the
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range 70 < Re < 90, the flow became t-quasi-periodic (time quasi-periodic). He
attributed the second frequency to a different shedding regime of the plane wake.
Lim (ref.), who found t-quasi-periodic instabilities of the (plane) von Karman
inviscid potential solution, recently referred to Tritton’s hypothesis.

However, comparing Tritton’s visualizations and velocity traces with work
performed ever since (by, among others, Gaster (ref.), Gerrard (ref.)) leaves no
doubt that he had a 3D wake, with spanwise cells oscillating at distinct
frequencies and separated by vortex dislocations. In fact, even t-periodic wakes
are hardly 2D: the vortex cores aré not parallel to the z-axis. Berger (ref.) and
Gerrard (ref.) reported oblique shedding, consisting in straight vortices, but not
in the direction of the z-axis, while Hama (ref.), or Slaouti and Gerrard (ref.),
observed parenthesis-shaped vortices. Sometimes, 3D vortices break, producing
cells and t-quasi-periodic fluctuations. The explanation of these various 3D
effects has motivated scores of papers for nearly thirty years.

Gaster (ref.) produced a second frequency and bent vortices by imposing a
non-uniform basic flow. He proposed that a discontinuity in the frequency-velocity
relation occurred when the node between two cells moved across the probe.
Curiously, he could not get rid of a second frequency, even though the flow was
apparently uniform (Gaster (ref. 2)).

Obstacle vibrations are quite a confusing effect, that Berger (réf.) addressed
very soon, and cleverly applied to wake control. Berger and Wille (ref.) reviewed
numerous contradictory experiments. Sreenivasan (ref.), seeking an example for
some general features of transition to turbulence, observed windows of chaos in
the wake of an obstacle. Van Atta and Gharib (ref.) revealed that aero-elastic
coupling was involved in his observations. Their “measurements suggest that if
there were absolutely no vibration a Strouhal-Reynolds number (frequency-
velocity) plot would have absolutely no discontinuities”.

Slaouti and Gerrard (ref.) “found that the wake structure was strongly
affected by the flow configuration near the ends of the body, which itself
depended entirely on the constraints imposed by the end construction”. More
precisely, Gerich and Eckelmann (ref.) identified end cells in the following cases:
either an end plate (with a boundary layer, denoted EPBL) or a free end (with a
pressure short-circuit around the tip, increasing the base pressure). Williamson
(ref. 2) showed that the end effect could even propagate from the end through
the whole span, imposing oblique shedding and various 3D effects, without either
flow non-uniformity or vibrations.

A theoretical advance occurred in the 1980’s: the (global) stability properties
of the plane wake were related to the (local) stability properties of the velocity
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profiles at different x locations (Huerre and Monkewitz (ref.)). This approach had
the physical qualities of locating the obstacle, thus allowing disturbances to grow
in space (and time). As noticed by Monkewitz (ref. 1), the experiments and the
modelization performed at L.R.C. - by my predecessors Boyer, Mathis, Provansal-
show that the Bénard-von Karman instability is an absolute instability:
disturbances grow in place, leading to self-sustained oscillations (even if noise
were turned off, oscillations would remain). The absolutely unstable velocity
profiles are located in a finite area, the “wave maker”, downstream from the
obstacle. Even more strikingly, Triantafyllou and Karniadakis (ref.) affirmed: “the
vortex wakes of bluff bodies can be reproduced by only knowing the time
average flow at one specific location behind the object, where it is most unstable
according to linear theory.” In the Landau model developed at L.R.C., a single
oscillator, i.e. a complex function of time A(t), stood for the wave maker. The time
evolution equation for A was an autonomous equation, meaning that the wave
maker, dictating its instability to the whole wake, evolved on its own. Quite
remarkably, the same ideas had risen simultaneously from theory and
experimental practice. _

However, t-quasi-periodicity remained unexplained. The numerical
simulations of the Navier-Stokes equations for the plane wake didn’t show either
any t-quasi-periodic fluctuation (Karniadakis and Triantafyllou (ref.), Sa and
Chang (ref.)).

The results of Mathis, Provansal, Boyer (réf. 1) confirmed that t-quasi-
periodicity implied 3D effects. Louis Boyer asked me to improve the Landau
model, in order to explain those space-time effects.

1.2. The nature of 3D effects at low Reynolds numbers

At first sight, the basic flow of greatest theoretical interest is the 2D one.
Unfortunately, not much information is available about this flow, because it does
not exist in nature, and its numerical study is still a difficult task. However, at low
Reynolds numbers, its instability is probably 2D (parallel shedding), for a
theoretical reason: the Squire's theorem (Drazin and Reid (ref.)); and an
experimental reason: stable parallel shedding can be obtained with a finite
geometry by manipulating the end conditions (Eisenlohr and Eckelmann (ref.),
Williamson (ref. 2), Hammache and Gharib (ref.)).

At higher Re, Hama (ref.), Provansal (ref.) and Williamson (ref. 1) observed
z-periodic patterns, with a wave length independent of the aspect ratio L/d. This
can be interpreted as a secondary instability of the 2D flow: in the simpler case,
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the 2D bifurcating flow becomes linearly unstable with respect to some z-
sinusoidal disturbance (z-sinusoidal because, in short, a linear differential
equation with constant coefficients is involved). In reality, the sudden appearance
of highly non-linear patterns, like horse-shoe vortices, and the existence of
hysteresis, imply that finite amplitude perturbations are involved in the transition.

The present work does not deal with this kind of 3D instability: it is restricted
to low Reynolds numbers, where no 3D instability of the 2D basic flow
exists (Re < 180 resulting from Williamson (ref. 1)). So, why are there so many
3D effects at low Reynolds numbers? Among all possible reasons, one is just
unavoidable: real flows are bounded along z, and, so far, this finite length
effect has never been clearly recognized.

Near the threshold, the characteristic length scale is diverging, as expected
from the bifurcation theory of spatially extended systems (Kuramoto (ref.)), and
cannot be neglected before L, however great. As the instability cannot develop
freely, a quasi-linear behaviour is obtained. Further above the threshold, through
a highly non-linear saturation process, the pattern becomes roughly independent
of L, and the finite length effect becomes the end effect.

The hypothesis of a uniform basic flow and a finite length proves capable of
explaining many experimental 3D effects, that were formerly attributed to other
causes, like flow non-uniformity. Actually, the confusion is easy, because most 3D
effects have similar features (bent vortices, cells, vortex dislocations).
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2. Building a model
2.1. Weakly 3D flow

Because of the obstacle elongation, the flow varies slowly along z. Thus,
there may be some relation between the actual flow at some z, and the plane
flow around the local cross-section, with the local upstream speed. This latter flow
| calllocal wake.

The weakly 3D properties can be predicted by finding how all those local
wakes live together; this is a self-organization problem, as defined by Haken (ref.)
or Kuramoto (ref.). A diffusive coupling between local wakes is proposed as a
lower order approximation of the actual coupling.

2.2. The plane wake: useful remarks and proposal for a Landau
model

2.2.1. Dimensional analysis and the von Karman model

All unknown quantities in the plane wake of a disk, are functions of the only
four external parameters V_, d, v, p. The three independent units for Mass,
Length and Time are M, L, T. As the problem is independent of the choice of
units, any physical quantity x with unit M2 L2 TC is linked to the external
parameters by a non-dimensional function XM LT such as

Ve

d v Y
=Xn,[,,:r( y = ,
LT Ly mo®

X
A canonical choice is L =dand M = pd3. But there are three possibilities for T :
* Roshko time scale: T = d2A.

x/(Ma b T =xp ¢ 7 (Re=V,dv, 1,1, 1) = xg (Re) (1)
« Strouhal time scale: T =d/V_, .

x/(Ma b T) =xpp 7 (1,1, Re’1, 1) = xg (Re) (2)
* Lin time scale: T = va,2 (named after Berger and Wille (ref.), p.316)

/(M3 LP TO) = xpp .7 (Re’1,1,Re2, 1) = x| (Re) (3)
The result of this dimensional analysis is that only one external parameter has to
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be considered, the Reynolds number.
In the (2D) von Karman model (c.f. DRA 02),

k the circulation of each vortex,

a the wave length, and

b the width of the vortex street

form a complete set of independent unknown quantities.

¢, celerity of the vortex street (measured in the same frame as V.), is then given
by

V,, - ¢ = x/(2a) th(r b/a).

For the least unstable vortex street (Lamb (ref.)),

b/a = 0.281... and V,, - ¢ = x/(2V2 a).

Two degrees of freedom cannot be determined because neither the viscous
effects nor the obstacle are included.

Most features of the real wake depend on x. However, the frequency f does

not, because the number of shed vortices is conserved. Precisely, if n(t, x) is the
number of vortices per unit length along X,
dtn +0dy(nc)=0 (4)
In experiments, n(t, x) is steady, and both terms in (4) are zero. The frequency f =
n ¢ does not depend on x. In 3D cases, when many cells are present, this
property applies to each cell frequency. The t-quasi-periodic spectrum exhibits
the same frequencies everywhere in the wake.

Thus, frequency is the quantity of easiest access in the problem. An
experimental measurement of the plane wake frequency (though submitted to the
interpretation of an actually 3D experiment) is Williamson’s “universal curve”
(Williamsbn (ref. 2), fig. 15). With the notation of (1), (2), (3), | keep the linear fit

fr=1d2A = - 5.1064 + 0.2175 Re = Rog + Roy Re  Roshko number  (5)
fg =fr/Re Strouhal number (6)
| =fg/Re? = fwV,2 Lin number (7)
At constant V__, one can check on (5) that d — f is decreasing if and only if

Re > -2 Rog/Ro¢= 47.0 (8)

As the critical Reynolds number for the plane wake is Reg = 49 (estimates from §
4.1. range from 48.4 to 49.7), (8) is true, and even suggests that Reg be the

critical point in the relation d — f at constant V. Is this only a coincidence?
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2.2.2. The Landau model
At first, | briefly recall some experimental results of Mathis, Provansal, Boyer

(ref.): the loss of steadiness corresponds to the onset of an unstable mode. The
fluctuating field is given by

v(Re,t,x=5d,y =0, z) = real(A(Re, t, 2)) , (1)
where A obeys a Landau equation

Ar=c A-T|A[2A (2)
with

o=o. +i 6", I'=1l+}. (3)

oy depend on Re, and vanishes at Re = Re 1, the critical Reynolds number for the
real wake, strongly depending on the aspect ratio. By convention, the linear
pulsation o;'(Re) is positive. Saturation implies I’ > 0. But this model does not
explain the following facts:

*Req, ;" and | ' depend on the aspect ratio.
* The saturated energy (and |,') depend on z (Mathis, Provansal, Boyer (ref. 2)).
* A second mode appears when Re increases.
Clearly, these effects are 3D. | would rather have a model predicting them.
The first element of this model is a Landau model for the plane wake .
The fluctuating field obeys

v(Re, t, x = 5d, y) = real(A(Re, t) f(y)) (4)
(an improved definition is given in appendix A1)
Ar=cA-1|AI2A (8)

The t-sinusoidal asymptotic solution corresponds to the t-periodic asymptotic flow

found in plane numerical simulations. ¢ and | are functions of the external
parameters. (2.2.1.$1) proves that od2/v and Iv are functions of Re only: od2/y =

oRr(Re) and, by definition of Reg, o,g(Req) = 0.
It is now necessary to introduce the third space coordinate, z.

2.3. A Ginzburg-Landau model for the weakly 3D wake
The external parameters involved in (2.2.2.$2) are Re(z) and d(z). The

Landau model for the plane wake is applied to the local wake, and completed
empirically with a diffusive coupling:
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v(t, x = 5d(2), y, 2) = real( A, z) f(y) ) (1)
3 A =o(Re(z), d(z)) A + 13,2 A-I(Re(2)) |AI2A (2)

The complex u is, in general, a function of the basic flow, here the functions
Re(z) and d(z).

Th n ndition

A place where the fluid oscillation vanishes is called a node. If two nodes
are located at z¢ and zp, then, following the method of § A4.2., (2) is solved on
(z4, zo] with the boundary conditions
Alt, 21) =0 and A(t, 22) =0 (3)

As the obstacle length is finite, fluid oscillation must stop when z — teo;
therefore, two nodes, called external nodes, exist with a minimum and a
maximum z. Experiments show that external nodes are located near the ends (z =
+ L/2). (3), applied at the external nodes, represents the physical boundary
conditions. Confusing the locations of nodes and extremities,

A(t, £L/2) =0 (4)

The solution of (2) may produce nodes in the interior of the definition
interval: these “internal” nodes have phase singularities, corresponding to vortex
dislocations. Once the location of an internal node is known, it can be used as a
boundary, without affecting the solution A(t, z). The solution on one side of the
node is independent of the solution on the other side of the node: a node acts as
a screen.

Other possible boundary conditions are periodic boundary conditions
Alt, -L/2) = A(t, L/2) (5)
They are not physically relevant (except for the wake of a torus!).
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3. The time-sinusoidal solution of the GLCO model for a uniform flow
(analytical and numerical resuits)

3.1. Transformations and scaling

Transformations

It At, z) is a solution of the GL equation (2.3.$2), then
* For any complex number u of modulus 1, u A(t, z) is still a solution (this property
results in the marginal stability with respect to phase perturbations).

* For any real number w, exp(iwt) A(t, z) is a solution of

Ot A = (o+i W)A + 1 3,2A - 1|A|2A (1)

* A(-t, 2)* is not a solution, unless the coefficients o, 1, | are purely imaginary
(case of a non-linear Schrédinger equation); however it is a solution of the

conjugate equation; the signs of Hj and |; are relative to the convention adopted

for the sign of o;.

* A(t, z) is not a solution, unless the coefficients are real.

* A(t, -z) is a solution if the coefficients are even functions of z.

Kuramoto scales

In the 3D case, the length scale introduced in § 2.2.1. is L = d(zg) where zj
is the location of some typical local wake. Kuramoto proposes new scales, based
on o(zg), ky and I (zg):

A=Ak (or/ )12 t=ty 0,1, 2= 2 (/o) 172 (2)
These new scales are always used in this chapter, and unnecessary
indices K are dropped. For a uniform basic flow, the rescaled GL, or GLCK
equation, is

A= (1+4iCg) A + (14 c) Agy - (1+i Cp) |A]2A (3)

with cq = oj/op, Cqy =HiupCo =Ii/ly.
3.2. Exact results

The problem to solve is (3.1.$3), with the boundary conditions:
A(xLg/2) =0 (1)
The association of (3.1.$3) and (1) is the problem GLCKO, indeed the main object
of the present work. As cq affects the solution only by a frequency shift (from
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(3.1.$1)), the mathematical external parameters are c1, €2 and the Kuramoto
length L, related to the physical external parameters Re and Lg by

2
/ | odiv / om(Re)
Le="L _G_r= L gﬁ__= LR hd LA S
) ue d He/V wr(Re) (2)
As long as the variation (c4, co)(Re) can be neglected, Lk alone represents the

evolution of the wake when varying Re or Lg. As oy(Req) =0,

Lk — 0 when Re — Reg (3)
(critical divergence of the Kuramoto length scale)

3.2.1. Analysis

Let a t=-sinusoidal solution of GLCKO be written

A(t, z) = R(z) exp(io(t, z)) (1)
Useful notations are introduced:

o(t, z) = (co-Co)t + @1, 2)

® = Ot (2)
Q=(Dt (3)
q=(I)Z

® is the full phase; @ is the shifted phase; the full pulsation ® is steady, by

hypothesis; the shifted pulsation Q vanishes for parallel shedding; q is the local

wave-number. The boundary conditions are

R(+L/2) = 0 and (by physical requirement) q bounded when z — £ L/2 (4)
The real and imaginary parts of GLCK reduce to

0=R-R3 + (R,,-Rg?) - ¢4 (2R,q+Rqy) (5)

RQ=co(R-R3)+cq (Ryz-Rg?) + (2R,q+Rqy) (6)

After two independent linear combinations,

RQ=-(c1-Co) (R-R3) + (1+ ¢1?) (2R,q+Ray) (7)

c{RQ = (1+¢1Co)( R- R3) + (1+ ¢42) (Ry-Ra?) (8)
Noticing

R(2R,q+Rqy) = (QR?), (9)

and using the boundary conditions (4), equation (7) leads to
Q(R) = -(cq1-Co) (1- My(R, L'2)/ Ma(R, L/2) ) (10)
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—_R2(5\C1-C2 M2(R’Z) - M4<R’Z)
R 2) =R R, o) el A "

with the functional expression

¥4
Mn(R, 2) zf R(z')"dz' .

-2 (12)
Introducing R(z) = R,(0) Z + O(Zz) with Z=2z+L/2 - 0in (11) leads to

R 2)=1 G2 MaR, L72) - o
W23 et MR, ) 27O 13

It is possible to eliminate q from (8) and (11). The resulting equation is

Rz = -0REp(Q, R(2)) + £(R, 2) (14)
where

Ep(Q, R) = u(Q) R%/2 - v R4/4 (15)
U(Q) = (1+¢4Co-c1Q)/(14¢12), v = (14c1Co)/(14+¢12) - (16)

(u depends on R through Q)

R, z) = R(z)3[ &2 M\ R, L2 Mx(R,z) = MR, 2) 2
R 2= R (922 Myn, ) (LD ML) -

(14) is the equation of motion for a pseudo-particle, with position R at pseudo-
time z, submitted to the potential Ep and the non-conservative force f, depending

on the history of motion and Q. The energy is

E(z) = (1/2) R,2 + Ep(Q, R(2)) (18)
It is not a constant of motion, since its pseudo-time derivative is the power of f:
Ez(2) =R;(2) f(R, 2) ‘ (19)

By drawing the shape of the potential and checking whether a solution with
R = 0 at two distinct z is possible, the following proposition follows:
if v>0, thenu(2) >0 (20)
(fu<0andvz20, the particle dropped at R = 0 never comes back, and there is
no solution of (4), (5), (6).)

If (q(z), R(z), Q) is a solution of (4), (5), (6), then (-q(-z), R(-z), Q) is also a
solution; this can be checked directly, but | give a proof on (10), (11), (14) as a test
of coherence. | define, for any function f, the function Tf by

Tt (2) = f (-2) (21)
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| get successively

Mp(TR, 2) = M (R, L2) - M\ (R, -2) (22)
q(TR, z) =-Tq(R, 2)

Tf(R,2)= f(TR, 2) (23)
Q(TR) = Q(R)

32,, TR(z) =T 3%,,R = DREp(Q(TR), TR(2)) + (TR, 2)
(-Tq, TR, Q) is a solution of (10), (11), (14).
The problem of unicity and existence of a t-sinusoidal solution for the
GLCKO model has been reduced as follows: find (R, Q) such as
« R(xL/2) = 0.
« Qis a function of R given by (10).
« R(z) is the motion of a particle submitted to a potential and a non conservative
force depending on R(z) (z’ < z) and Q.

| now admit that this problem has no more than one solution (here, as in many
other cases, unicity results from non-linearity). An immediate consequence is
Tg=-gqand TR=R ' (24)

3.2.2. How to build a solution

If Q were known, (3.2.1.$14) would be causal, and could be integrated as
any other mechanical equation of motion, the particle being launched from the
position R = 0 at time z = -L/2, with some given speed R,(-L/2). This gives the

idea of determining Q and R by alternate successive approximations. The

recurrence is initiated by Q = 0 (parallel shedding shifted pulsation), and iterated
as follows.
For some given Q, | look for an initial velocity R, such as the particle left at R

= 0 with velocity R, comes back after the pseudo-duration L (or, using the parity of
R, makes U-turn after the pseudo-duration L/2). This is a corrected shoot method.
The motion is actually a half (or a quarter) period of a periodic motion. f vanishes

atz=p /2, p e Z, and does not hamper the qualitative study of motion.

The existence of a solution depends on the value of L and the signs of u and
v. The case u > 0, v > 0 is treated on DRA 03, with the qualitative shapes of Ep(R)
and R(z) for various initial values of R,. The z-period is greater than the linear
period & and all values L > & lead to a unique solution. When L — oo, the particle

makes U-turn closer and closer to the maximum of Ep:
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lim RO)2=Y=1--S12
Loe v 1+C1C2 (1)

Once R has been obtained, a hopefully better value of Q can be deduced
from (3.2.1.$10) and used to compute, if possible, a better R, and so on. The
convergence towards a solution is likely. However, | leave the proof to somebody
else, and | admit the existence of a t-sinusoidal solution for GLCKO.

Of course, the stability of the solution is still an other problem, treated
numerically in § 5.2.. But | give the idea of an analytical approach, in the case u >
0, v> 0 (c.f. DRA 03). The particle oscillates in the crater of the “volcano-shaped”

potential Ep; if it skims the “crater rim” at pseudo-time z = 0, the z-period Lk tends

to infinity; then, a finite amplitude perturbation at z = 0 can drive it out of the crater,
with no hope of return. Numerical transients indicate that such a perturbation
actually occurs during the collision of phase shocks (near z = 0), prior to the set-
up of the asymptotic pattern (c.f. § 3.4.).

3.2.3. Particular case cq = co

In this case, GLCK is non-dispersive, since all plane waves have the same
pulsation (c.f. (3.3.2.$2)). It is easily shown that GLCKO has then a unique
solution.

(8.2.1.$10) and (3.2.1.$11) give Q =0 and q = 0; R is solution of

R,z = -9REp Where Eq(R) = R2/2- R4/4 (1)
After a first integration:
Rz2/2 + Eg(R) = E4(R(0)) (2)

A second integration, using the boundary conditions, leads to a unique solution
R(z), obeying
L = A(R(0)) (3)

where

Al = 2 dx

(4)

The function A can be expanded in powers of r2 with a radius of convergence 1:
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A(r)/1t=ao+a1r2+a2r4+a3r6+a4r8+... (5)
ag =1;a4 =3/8; ap = 57/256; ag = 0.15381...; a4 = 0.11576... (6)
The saturation of R(0) with increasing L appears on NUM 01.

3.3. Approximate results

3.3.1. Near threshold approximations: few unstable linear modes

In a finite medium, with the boundary conditions (3.2.$1), | diagonalize the

operator (1+icqg) + (1+ic4 )aZQ. The eigenvalues are

Op = 1-qn2 +i (co-qn201) wheregg=nn/L,n=1,2, .. (1)
The eigenfunction associated with o, is

Sn(2) = sin(gn(z+L/2)) (2)
The general solution of the linearized problem

A =(1+icg) A+ (14 cq) 3,2A (3)
is consequently

At,2)=Z n=1 2. An(t) Sp(2) (4)
A, is called “global complex amplitude” of mode (S, o) and obeys

dt An = 0n An (5)
An (1) = exp(ont) Ap(0) (6)

Mode (Sp,, op) is linearly unstable for L > n n .This proposition was proven in the

particular case ¢y =¢p, n=1, by A(0) == (§ 3.2.3.).
The solution of GLCKO is still in the space of linear combinations (4),

because it is stable under the operation A— | A|2A. But non-linear interaction
terms must be added to equations (5).

If 1< LUr < 2, all the modes but (S¢, o4) are linearly damped, and are
eliminated “adiabatically™:
Alt, z) = Aq (1) S1(2) (7)
Plugging (7) into the GLCK equation (3.1.$3), and neglecting components other
than Sq, leads to a Landau equation on the global complex amplitude A4:
dy Aq=G1Aq - (3/4) (1+ico) |A112A, (8)
The coefficient 3/4 originates from the relation 4 sin3(x) = 3 sin(x) - sin(3x). The

asymptotic solution of (8) is
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A1 =Ry exp(ioqt) (9)
with

R12 = (4/3) (1-q42) (10)
(OF) =C0-Cz-Q12(C1-C2) Q4 =7/l (11)

A(t, z) = A¢(t) S1(2) is the sum of two plane waves with wave numbers tq4 and
pulsation w4, interfering so as to obey the boundary conditions. The relation (10)
confirms the coefficient a4 given by (3.2.3.$6).

If2 < L/r < 3, the modes with n > 2 are linearly damped, and | keep
Alt, 2) = Aq(t) S1(z) + Aa(t) So(z) (12)
This leads to the coupled equations
diAq = ayAq - (1+ico) [(3/4) [ A1 12A1 + (1/2) A; Ax2+A{ | As| 2] 13)
14)
), and

introduced in (14) as an external forcing. This leads to lim t—e Ao = 0. The

(
dy Ag = oA - (1+ico) [(3/4)| Agl 2An + (1/2) Ap A1 2+A5 | A{12] (
A1 can be calculated by neglecting Ay in (13) (the resulting equation is (8)

unique t-sinusoidal solution (A4, As) = (R4 exp(imqt), 0) is also the asymptotic
solution. Mode (S, op) is non-linearly damped (forced to zero) by mode (S1,
o1)-

This can be generalized for any value of L: the GLCKO model has a t-
sinusoidal solution, that is in fact, with R, 2 0 and ¢, real,
Alt,z) =exp(iat) 3, Rn exp(ign) Sp(2)

<<l (15)

Using (3.2.1.$24), Ry, with even n vanish: the modes (Sp, 0ny) with even n are

non-linearly damped. The modes (S, on) With odd n are present, but

entrained. The solution may not have a uniform phase, corresponding to non
parallel vortex shedding.
Something is wrong in the last approach: because of non-linear effects, the

sum (15) must be extended to all n. For example, even if 1 < L/n < 3, the modes
(Sp, op) with n = 3, 5, ... are present because of non-linear coupling. This is
taken into account in a calculation performed by Monkewitz (ref. 2), nearL =7 . A
small € > 0 is defined by

L=rx(1+€2) (16)

Convenient independent linear combinations of the real and imaginary parts of
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GLCK are:
0=R-R3 + (Ryy-RP,2) - c1 (2R, P, +RD,;) (17)
Rdy = (C1-Cp) (Rzz-R®,2) + (14¢1C2) (2R,®,+RD;) (18)
Definitions:
forn e Z,f, =cos(n nz/L), g, =sin(n nz/L); (19)

for odd n = 2k+1, fy = cos(n nz/L) = (-1)K S (2).

The t-sinusoidal solution is expanded in powers of € :

q = 209095 +£}(04292.,04494) + O) (20)
R=ep11fy + (31t 4P33fa) + £ (P5114P53134P55Ts) + o) (21)
Q=0 +€2 Qp +£7 Q4 +Od) (22)
Plugging (20), (21), (22) into (17), (18) leads to:

« At ordere,

Qg =- (c4-Co) (23)
« At order 83,

p112=8/3 (24)
paalp11 =- (1+C1C2)/(12(14¢12)) (25)
b9 =- (C1-Co)/(3(1+¢12)) (26)
Qo =2(Cq-Co) (27)
* At order 85,

P31/P19 =-3/4 + (1+C4 Co)/(24(1+C1 2)) +Co (C1-C2)/(72(1+C4 2))

50 c? + (2c4-Cp)? + 51

ol = 72 (1+4¢9) (28)
Q4=-(3 +—ﬁ£——) (c1-C2)
18(1+c?) (29)

The remaining coefficients can also be calculated except pgq, that is left
undetermined (because the system is not finite-dimensional). Setting c4-Co to
zero in the expressions of p11,p31. P33 given by (24), (28), and (25) confirms as
given by (3.2.3.36).
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What is new, compared with the Landau model (3.3.1.$8)?
* About R: the negative sign of P33/P11 shows that the sinusoidal shape of R is

flattening near z = 0 when increasing «.

* About the full pulsation o, now accounting for all the modes:
W = Cp-C1 + 2 2(C1-Cg) -¢4 ( 3+ ——1—+€§—) (C1-Cz) + 0(86)
18(1+c?) (30)

Comparing @ with w4 given by (11) leads to
=4 - e +¢p2) / (18(1+¢12) )] (cy -Co) + O(e%) (31)

In experiments, vortices are shed with a non-zero celerity; consequently, o cannot

vanish. By convention (§ 2.2.2.), Cg > 0; accordingly, @ > 0, w4 > 0, and, using
(11), cg-c4 > 0. At given Re and LR, parallel shedding has the highest possible
frequency: (31) imposes c4-co > 0. In summary, | keep as a hypothesis drawn
from experiments

Co>C1>Cp (32)

* About q: as ¢4-Co > 0, doo < 0, meaning that @ or ¢ are decreasing from the
center to the sides of the definition interval (at some given t). Since ¢ is also an
increasing function of t (» > 0), the sides, with a lower phase, are late compared

with the center. This corresponds to vortices bowing towards the obstacle ends.
3.3.2. Far from threshold solution

The plane wave solutions are, in an infinite medium:
Aqlt, 2) = (1-92) 12 exp (i g t +i qz) with |q] < 1 (1)
g =CoC2 - q2 (cy-Co) (2)
Ag, called parallel plane wave, corresponds to parallel shedding.

Aq;ﬁo, called oblique plane wave, corresponds to oblique shedding.
1 refer to the restriction of a plane wave to some interval as a ‘plane wave
section”. (2) looks like (3.3.1.$11), where q4 would have been replaced by q. In
experiments, the oblique shedding pulsation (q # 0) is lower than the parallel
shedding pulsation (but still positive), confirming (3.3.1.$32). This property is
called non-linear dispersion.

There is now a question arising: what is the solution of the boundary
condition problem GLCKO when L is very large? Plane waves are expected to
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emerge. Not so obvious is that the parallel plane wave, with pulsation wg = Co-Co,
is not recovered, because it doesn't fit the boundary conditions.

A first step is to solve the semi-infinite boundary condition problem:
R(,0)=0 (3)
R, —» 0 and g, — 0 forallt, when z — o (4)
or, identically, A(t, z) far from the end is a plane wave section. Noticing that an
analytical solution exists in the particular case ¢q = Cp, Clavin (ref.) proposed to

expand the unknown (q(z), R(z), Q) in powers of e=Cq-Co:

a(z) = Go(2) + £ (2) + £%q2(2) + O( &) (5)
R(2) = Rg(2) + Ry (2) + e2Ro(2) + O( £°) (6)
Q=0 +eQq +€2Qp +O(£) (7)
Cp=C1-¢ (8)

Convenient combinations of (3.2.1.$5) and (3.2.1.$6) are (3.2.1.$7) and
(3.2.1.$8). The results, found with the help of Provansal, are:

* At order O:

7o=" ©
Rozz +Ro -Rg3=0 (10
Rg =th(z2) )
e At order 1:

=0 (12)
Ro2(1- Rg?) = (1+¢12)(a1Ro?);

qy= (Y2/3) (1/(1+¢12)) Rg ")
Rq52+(1-3Rg%)R1 = (c1/(1+c4 2)) (Rg-Rg°)

Ry = -(1/2¥2) (c1/(1+¢12)) z (1- Rg?) "
* At order 2:

29 (15)
(1+c12)(qoRg2+2a1 RoRy)z = 2RoRy (1-2Rg?)

G = (1/(3V2)) (e1/(14¢12)2)(- (V2/2) 2 (1-Rg?) + Ro) (16)

Rogy + (1-3Rg2) Rp = (c1/(1+¢12)) (1-3R2) Ry + q42Rg + 3RgR42

For z — o, as expected, the solution is asymptotically a plane wave section,
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meaning q — q,, and R — R__, with

Y2 _1 1__C 2 3
Qo = (c1-C2) + —— (c1-c2)° + O((c1-c2)°)

3 1+cf 372 (1+c?)? (17)
Goo?+ Roo? = 1 (18)
This plane wave section is not necessarily stable. The exact value of the shifted
pulsation is
Q=-Qq..2 (c{-Cp) = O(e3) (19)

The full pulsation is
©=Cp-Co + Q=Cp-Cs - Qec? (c1-Co) (20)
Je is imposed by the boundary condition at z = 0, although it is observable far

from the end only. The effect of a single end is thus oblique shedding.
The case of a large, but finite length L is solved by numerical simulation.

3.3.3. A numerical example with cq # c5 and a variable L

A series of computations (NUM 02, NUM 03, NUM 04, NUM 05, NUM 086,
NUM 07) allows to check the ideas and formulas of § 3.3.1. and § 3.3.2..

When L is high, the situation near each end is idenfical to that of the semi-
infinite case. Two oblique waves with opposite wave numbers connect at mid-
span (z = 0), through a phase diffusion process (c.f. § A3.2.). With € = q,,oz, a=0,
b=1, (A3.2.311) leads to
Q(2) ~ -Gee th( [(C1-C2)/(1+€1C2)] Gz ) (1)

Q2 1+¢f 2, cy-C
R(z)=1-—(1- h 1722 O(a*

(2) 5 (1m0 e (1+C1C2qe°2)) +0(q2) @
The maximum value of R(0) given by (3.2.2.$1) is confirmed by (2). It can be
greater than 1. | define the phase shock width Az by
[(c1-co)/(1+C1Cn)] Qoo AZ =2 (3)
Using (3.3.2.$17) at order 1 in C1-Co:

Az ~ 3\/2 (1+C1C2) (1+C?)
(c1-C2)? (4)

If moreover |c4| is small,
Az = 3V2/ (c1-Cp)2 (5)

It is now possible to specify that the solution is highly non-linear when
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L » Az(cq, C) (6)
NUM 07 and NUM 06 provide a numerical example of such a case with,
moreover, small ¢{-Cs.

The phase diffusion equation (A3.2.$9), governing the bulk when (6)
holds, is invariant under any space translation. Therefore, the phase shock
position is neutrally stable (translating the phase shock produces a steady
dissymmetrical pattern). However, this neutral equilibrium is just an
approximation: one neglects the (repulsive) effect of the obstacle ends on the
phase shock, that is actually in the situation of a ball in a very flat potential well:
when pushed away from its equilibrium position, it comes back very slowly, or
does not even come back, because of solid friction. In computations, round-off
errors might play the role of solid friction; in experiments, the question is
unessential, because small non-uniformities are always present, and
predominant. In summary, the phase shock location is practically undetermined,
but this does not deny the unicity of the t-sinusoidal solution of the GLCKO model.

It is easy to check that the asymptotic solution of GLCK1 (periodic boundary
conditions) is the parallel plane wave, corresponding to parallel shedding. This
remark proves that the no-oscillation boundary conditions are liable for the non-
uniformity of the solution of GLCKO.

3.4. The transient (starting from noise)

The transient starting from noise, described by Albaréde, Provansal and
Boyer (ref.), features the saturating growth of three plane wave sections: one
parallel plane wave section, and two oblique plane wave sections, with opposite
wave numbers, invading the whole interval (c.f. HT 01, HT 02, DRA 04, NUM 08,
NUM 09, NUM 10, NUM 11, NUM 12, NUM 13). After the earlier “Landau” stage of
the transient, R = 1 and the bulk is governed by the phase diffusion equation
(A3.2.$9). The three plane wave sections connect smoothly through two phase
shocks, launched from the ends and moving inwards at speed
Vi = Qoo(C{-C2) (1)
The eventual collision of phase shocks leads to the asymptotic t-sinusoidal state.
Using the first order of (3.3.2.$17) for q.., the transient duration is

2
L(2vi) ~ 3V2 1+cf L

4 (cy-c1)? (2)

Since the oblique wave number is obviously not affected by the collision, it is
identical to that of a semi-infinite case, found in § 3.3.2., if (3.3.3.%6) holds.
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4. Experiments showing the time-sinusoidal solution of the GLCO
model

Experimental determination of the coefficients p,, ¢4 and c».

4.1. Near threshold experiments

Mathis, Provansal, Boyer (ref.) gave the experimental evidence of a Landau
equation. Of course, their apparatus was not designed to observe the 2D flow.
The amplitude modulus variation along z found by Mathis, Provansal, Boyer (ref.
2) had the sinusoidal shape of eigenfunction S4, meaning that the Kuramoto

length of the obstacle was not much greater than n. Their Landau equation

(2.2.2.$2) was certainly not (2.2.2.$5), but (3.3.1.$8). Without Kuramoto rescaling,
(2.3.$1), (3.3.1.$7) and (3.3.1.$8) lead to a revamped version of their model:

V(Re, t, x =5d, 0, z) = real( A1 (1) sin(qq(z+L/2)) 1(0) ) with g4=m/L (1)
dt A1 = (Op - iy Q1 2+i(0; - 1 G12)) Aq - (3/4) (I+ik) [ Aq ] 2A, (2)
(Actually, with the notations of § 2.2.2., ¢’ = - qq 2.)

The y component of f(0) is set to unity so that
vy(Re, t, 5d, 0, z) = real( A4 (t) sin(qq(z+L/2)) ) with q1=n/L (3)

4.1.1. Determination of oy,

The experimental results of Mathis, Provansal, Boyer (ref.), or Strykowski
(ref.) lead to:

Or - KrQq 2 _ (Re -Req) with k = (0.20 £ 0.02) v/d? for Re < 60 at least (1)

Req is the critical Reynolds depending on qq=n /L. Identically:

o =k (Re- (Req-k1 1, q12))

(Req- k1 Ky q12) must be independent of L since (by dimensional analysis)

ordz/v is a function of Re only; in consequence,

or = k (Re-Req)

Re{ =Req + k1 urq12 (2)
With the data of Mathis (ref.), recalled on EXP 01, | check the relation (2) on

EXP 02 and EXP 03. The experimental apparatus is described by Mathis (ref.),
Provansal (ref.). The obstacle length remained constant (10 cm), while the



-30-

diameter varied. Resulting from EXP 02,
k1 py=193d2orp, =39 v (3)
| performed an other test with constant d and variable L. From EXP 04, p, =

24 v. For EXP 05, each threshold was determined by extrapolating the linear
relation energy-Re, and | obtain

pp=32 v, for Re <53 (4)
The experiments of EXP 01 and EXP 04 differ by their EPBLs (End Plate
Boundary Layer), blockage effects, etc. This may account for the discrepancy
between the resulting values of u,. | will keep the value of (4), because it is

consistent with most of the experiments described hereafter. Apparently, does
not depend on Re.

The Kuramoto length (c.f. § 3.2.) has a very simple expression:
k(Re-Reo) g kr(Re-Reo)

Lx=L
K Kr KR

4.1.2. Determination of co

Strykowski (ref.) found
Co =-3.0 (1)
whereas a result of Provansal, Mathis, Boyer (ref.), expressed in the present
context, leads to

lco| « k™ 1doj/dRe = 3 (2)
This result is inaccurate. All other known experiments confirm Strykowski’s result.
Provansal (ref. 2) monitored the evolution of energy and frequency in

transients following an instantaneous shift of upstream velocity. During the
transient,
27 f= oy -k R2 = o - ke (Re-Reg) Ri2, with Ryc = RIRggt and Rga? = oy /Iy (3)
Applying this relation to the plots EXP 06, EXP 07, EXP 08 leads respectively to:
Cr=-3.3,-2.8,-1.9
and | keep, with no bias about the dependence co(Re),
Cr=-27£0.7 (4)
The negative sign of ¢o appears in 2D numerical simulations of the Navier-
Stokes equations by Braza, Chassaing, Ha Minh (ref.) or Lecointe and Piquet
(ref.).

For the sake of completion, | calculate the value of I, from Mathis’ data
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(Mathis (ref.)). From (4.1.$3):

vy(Re, t, 5d, 0, 0) = real(A(Re, t)) (5)
Cylinders with d < 0.7 cm and L = 10 cm obey

|A| = (0.11£.02) (Re-Req)1/2 vid (6)
Consequently,

(0.11 v/d) 2 = (4/3) K/, (7)
Iy = (2518) v' (8)

To tell the truth, the data for d > 0.8 cm give much smaller I, for undetermined
reasons.

4.1.3. Determination of cq-co

A first class of experiments allows to determine c4-co, from the guasi-linear
pulsation of mode (S1, o1), forecast by (4.1.$2):
o1 (Re, 412) = gj(Re) - 1; 912 - ¢ (op(Re) - 1y a1 2) (1)
C1-Cp is deduced from the variation of wy= 2nf4, not with Re, but the aspect ratio
Lg = L/d (indeed, q1g2= (mLR)2):

ofy __ Hr(Cc1-C)
aq? 2n (2)

From EXP 09 and (4.1.1.$4), | get

Hr(Cq1-Co)/ (2m) =14 v (3)

C{-Cp = 2.7 at Re = 55 (4)

Energy measurements show Sq (z)2. ﬁ
Below Re, = 57, the velocity field remains t-periodic up to more than thrice

the critical length, in accordance with the GLCKO model. At higher Re, however, a
second frequency is possible: this point is left for § 5.1..

4.1.4. Direct measurement of c4

An other experiment gives direct access to c4: | call w1 ¢ = 2nfq ; the value of
w4 at the critical Reynolds number Re . The point is that this onset pulsation is

not affected by non-linear effects, i. e. does not depend on Co.

01¢ (A12) = 01 (Re1(a42), 412) = 5;(Re1(q12)) - 1 q1 2 (1)
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Neglecting the dependence ; (Re), and using (1) and (4.1.1.$2) :

wi/2m = - dfy Jdaq 2 + k Ty (2)
where 2x v=do;/dRe (3)
From EXP 10, df1c/dq12 =20.9 v. The value y=0.16 given by Provansal, Mathis,

Boyer (ref.) cannot be used, because it is affected by the same inaccuracy as
(4.1.2.$2). | must rely on Strykowski’s value (Strykowski (ref.)) to determine

1 = Wi/ Ky and, through (4.1.3.94), co:

Y +0.11
Cq -0.65
cqH+27=Co -3.35

The value of co is compatible with (4.1 2.$1) and (4.1.2.$4).

ycan also be eliminated in the following way: | define

wg(Re) = @4 (Re, 0) (4)
Then, neglecting the dependence cx(Re),
dag/dRe = 2ny-cp k (5)

Eliminating v from (2) and (5), | get a new access 10 €{-Co:
cy-Co = 2r (" dfy/dgy2 - k Tdfg/dRe) (6)
wy is actually the plane wake pulsation. After Williamson (retf. 2),

dfp/dRe = Roq v/d2 = 0.2175 vid? (7)
The result is, again, ¢4-cp = 2.7.

4.2. Far from threshold experiments

Because the Kuramoto length is much greater than =, the Landau equation

(4.1.$2) doesn’t hold any longer, but a collective effect occurs: plane wave
sections appear. As was first noticed by Albaréde, Provansal, Boyer (ref.), the
solution of the GLCKO model, including the transient, and Williamson's
experiments above Re, = 64 are qualitatively identical (apart from the existence
of end cells, that is left for § 5.1.). In both cases, oblique vortex shedding
originates from the boundary conditions. Williamson noticed a symmetry of the
vortex field relatively to the phase shock line between the parallel shedding area
(plane wave section 0) and the oblique shedding area (plane wave section 1). |
call this property “symmetry law”. The situation is sketched on DRA 04. A relation
between x and t is introduced through a celerity c, simply meaning
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vit, X, y, ) = v( t-(x-5d)/c, 5d, y, z) (for x > 5d) (1)
This relation is not part of the GL model. It only makes possible the
exploitation of Williamson’s results. The underlying problem of handling the x-
coordinate and a demonstration of the symmetry law are exposed in appendix
A2.

| now express the symmetry law in the context of the GLCK equation
(3.1.$3). The plane wave section 1 with wave number g has pulsation

WK = CQ-Co - qK2 (c1-co) (2)
The plane wave section 0 with wave number zero has pulsation
WoK = Cp-C2 (3)

the symmetry law implies the equality of the (x, z) wave vectors (c.f. DRA 04):
(woK/eK)? = (@K/ck)?2 + Q2 (4)
Imposing that (2) and (4) are identical for low wave numbers, | obtain

c1-Co = (1/2) el (5)
Introducing Kuramoto scales (3.1.$2), wg = 2r fg and ¢ = fy A leads to

2 2
cr-co=-rofo _Aorfor _ Ao ¢ g
4npr 4npRr 4nUR Ve (6)

Typically, Agr = 5, g = 32, ¢c/V, =~ 1 and these quantities are roughly
independent of Re, giving

dRe(cq-Co) = 1072 (7)
Therefore, (cq, co) vary with Re, although this variation could be neglected
without rising contradictions in § 4.1.4. 102 fg, deduced from Williamson’s data, is

plotted on EXP 11, confirming (7). At Re = éo, C1-Co = 340 / (4n32) = 0.8,
unfortunately much lower than the values of § 4.1.3. and § 4.1.4..

Williamson’s parallel shedding x-wave length and angle measurements, in
conjunction with the symmetry law, allow to determine the selected wave number
q for each Re:

q = (2n/Ag) sin 8 (8)
The aspect ratio is high, compared with the phase shock width: the relation
(3.3.3.$6) holds and qk = JKe(C1, C2) Of (3.3.2.$17). The values of gR and aK
resulting from experiments are plotted on EXP 18 and EXP 19 (so far, only the
area Re > Re,, is concerned).

gk is a function of Re only and not of the end plate radius F. The EPBL

thickness 6 has no effect on the wave number, whereas the GLVKO model,
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including EPBLs, predicts that q., is a function of (cq, Co, d). Paradoxically,
experiments agree with the less realistic model GLCKO, where q., is a function of
(cq, co), itself a function of Re. The physical explanation is that the condition A=0
is imposed at the end cell nodes, always present in Williamson’s experiments
(though not in GLVKO, but this is an other story). Is this node outside or inside the

EPBL? At Re =150, Gerich and Eckelmann (ref.) measured the distance A
between the node and the end plate as a function of F. At the same Re, the EPBL

thickness, given by (5.1.3.$2), is 6g = 0.4 FR1 12, Very clearly, for all values of F

explored by Gerich and Eckelmann, A(F) > 2 §(F). The node is outside the

EPBL, and acts as a screen between the wake and the EPBL! (c.f. § 2.3.). Of
course, this situation should be checked for all Re.

The effect of varying (cq, co) on the solution of GLCKO is numerically
inquired. The plane (cq, ¢») is divided in two regions, as sketched on NUM 14.
One of them, called the unstable region, shows non t-periodic asymptotic
solutions for L high enough, and its study is left for § 5.2.. The remaining region,
called the stable region, shows the (stable) chevron of § 3.3.2., with, seemingly,
JeoK lower than 0.55 on the stability boundary. In experiments, t-quasi-periodic
and t-periodic asymptotic states are obtained respectively for Re < Re,y and Re >
Re,y (forgetting end cells). Thus, (c1, co)(Re > Re,y) is located in the stable region
and (cq, co)(Re < Rey,) is located in the unstable region. Moving towards the
unstable region results in an increase of qk., in experiments (EXP 19) as well as
in the numerical simulation of GLCKO (NUM 23).

Remark: the parameters Lk and cq also depend on Re. But the variation of Lk
has no effect in the stable region, as long as (3.3.3.$6) holds, and (3.1.$1)
shows that a variation of ¢ results in a mere pulsation shift.
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5. Time quasi-periodic fluctuations
5.1. The odd mode and end cells
5.1.1. Time-quasi-periodic fluctuations at short Kuramoto length

Mathis (ref.) and Mathis, Provansal, Boyer (ref. 2) observed a second mode

for Re > Res > Req, featuring the eigenfunction Sp of the linearized problem
(3.3.1.83). Moreover, EXP 13 shows that Reo obeys

Res = Reg +k1 urq22,q2=27t /L (1)

with Reg = 48.7 and p, = 42 v (instead of Reg = 49.7 and p, = 39 v determined on
the first mode in identical conditions).

| carried out experiments with constant Re and variable L, revealing the
approximate relation between the critical lengths
Lo=2L4 (2)
(4.1.1.$2), (1) and (2) correspond to the marginal stability conditions of modes
(S1,01) and (Sp, o9): real(cy) =0,n=1, 2, i.e.

qn? =k 1(Rep-Reg), n =1, 2 (3)
This relation is compared with experiments on EXP 14. The agreement is not
perfect, possibly because | did not use the best threshold determination method,
that is extrapolating the zero of the Re-energy relation.

Coming back to the case LR = constant, one obtains the theoretical relation:
Reo-Req = 4 (Re¢-Req) (4)
With Mathis’ data, it is possible to plot Rep vs. Re ¢, but the agreement with (4) is
not very good.

The onset pulsation wo, of the second mode can be compared with the
linear pulsation imag(co) of mode (S, 65). A short calculation performed at L = 2
L4 gives:
w4-imag(os) = (3/4) (cq-Co) o (5)
Two distinct experiments at Re = 68 and Re = 70 (c.f. EXP 16) give
®1-Woc < 21 X 0.4 6, whereas
w4-imag(os) = (3/4) x 2.7 x 0.2 x (70-49) =2n x 1.4 o}

Is the discrepancy between wo. and imag(cp) a consequence of the non-linear

interaction between the first mode and the second mode? GLCKO accounts for
this interaction, through (3.3.1.$13) and (3.3.1.$14); however, it forecasts that the
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second mode is non-linearly damped by the first mode (§ 3.3.1.), and this
contradicts most experiments, where A # 0.

An other property of mode (So, o9) can be tried on the second mode: since
the sign of S, changes at z = 0, a node with phase opposition is expected at z =
0. Gerich (ref.) published a flow visualization showing phase opposition for all x
(at a given t), and gave me confirmation of phase opposition also for all t. Since
S4(z) is even and So(z) is odd, the first and second modes will be called
henceforth even and odd modes. Gerich’s fig. ¢ (ref.) shows the odd mode with

Lk =3.5n (based on p,=32v,k=0.2 d2n, Req = 49). The even mode is visible

on fig. d, where Lk = 2.2 &, which is still compatible with the expected relation Lk

< 2 &, allowing for a margin of error.

Numerical simulation

These experiments correspond to the quasi-linear case (2n < Lk < 10). With
random noise initial conditions, mode (S», 6o) appears in GLCKO. Imposed in the
initial conditions, it does grow according to the linear theory, as long as mode

(Sq, o1), starting from numerical noise only, is negligible. But mode (S¢, o),

growing faster, eventually overwhelms and annihilates mode (So, o5), confirming
the notion of non-linear damping, and the contradiction between the GLCO model
and the existence of the odd mode.

5.1.2. Evolution of the odd mode above the threshold

| performed an experiment whith increasing L at constant Re = 70, from a
subcritical length. The frequency variation appears on EXP 16, EXP 17. The
global amplitude modulus of the odd mode increased quickly above its threshold,
and even became greater than the global amplitude modulus of the even mode,
as seen on EXP 15, where Lk = 2.6 n. Phase opposition was not checked,
because only one probe was available; but the right and left frequencies (along
z) were rigorously identical (otherwise, | would have detected a very low
frequency beat). The even mode is clearly overwhelmed by the odd mode, as
(probably) on Gerich’s fig. ¢ (Gerich (ref.)). For Lk = 3x, the odd mode splits apart
into end cells, each remaining attached to one end of the obstacle, with slightly
different frequencies fg and fg’ (because of a small dissymmetry). Then, the wake
exhibits a strong non-linear mixing of three frequencies (already presented in
Albaréde (ref.)), with a very powerful low frequency beat at [fg-fg'[-
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For higher L, the even mode regains spatial predominance in the bulk (c.f.
Gerich and Eckelmann (ref.) and Williamson (ref. 2) fig. 27). The end cells are far
away from each other, do not interact and are independent of L: once again, the
finite length effect, through a non-linear saturation process, becomes the end
effect.

5.1.3. Relation between the odd mode and the end configuration

Th m n n

The existence of the odd mode depends on the fetch F, distance along
which the EPBL has been growing before reaching the obstacle (fetch is the
nautical term for the growth distance of wind waves, and is herein extended to a
boundary layer). With F = 15cm, L=10cm, d = 1.6 mm, the odd mode appears
above Rep = 50 (Mathis (ref.)). With F = 2 cm, variable L < 7 cm,d = 1.6 mm, the
odd mode appears only if Res > Re, = 57. Incidentally, this situation allows to
check (3.3.1.$11) even for Lk > 2r, provided that Re < Rem (EXP 09). On the
contrary, when Re > Rey,, the even mode frequency is strongly affected by the
odd mode (EXP 17).

I checked that the EPBL thickness & obeyed Blasius’ law:
8/d =5 (F/d) 1/2 Re-1/2 (1)
Sk(Re, F) = 5 (kFRiuy) 1/2 ((Re-Reg)/Re) /2 (FR is F/d) (2)
8k increases with Re. The EPBL may support a cell above Rem, only if 8k
exceeds a critical size.

Anyway, the flow near the ends enhances the odd mode: its quasi-linear
limit mode (S,, 0s) as was just shown, and, also, end cells, considered as the
highly non-linear limit of the odd mode.

w Xi
The last remark suggests to introduce symmetrical EPBLs in the GLO model,

through o(Re(z)). The resulting GLVO model has an even asymptotic solution

(though not necessarily t-periodic). A uniform shear on Re(z) does not produces
the odd mode either.

To my mind, the odd mode escapes the GLO model because the weakly 3D
approximation breaks down near the ends. There, the flow is not weakly 3D, the
wake is unrelated, even locally, to the plane wake, and the stability properties
cannot be represented by Re(z) and GL.
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5.1.4. Conclusion for § 5.1.

In quasi-linear conditions, the experimental odd mode has the threshold

and shape of mode (S», 0); in highly non-linear conditions, it takes the shape of
end cells. In the GLCKO model, the odd mode is not found in the asymptotic
solution, because it is non-linearly damped by the even mode.

In some experiments, the odd mode can equally be inhibited by reducing
the EPBL fetch F. This shows that the odd mode is controlled and fed by the flow
near the ends, a fully 3D fluid mechanics problem, that was not included in the
GL model, and requires a separate study.

5.2. A theoretical explanation for Williawson’s transition at Rey, = 64

5.2.1. Crossing the chevron stability boundary

The numerical simulation of the GLCKO model reproduces Williamson’s
transition (Williamson (ref. 2)), by a slight variation of (cq, co), destabilizing the
chevron. A series of numerical simulations was performed for (¢, ¢p) crossing
the stability boundary. Conditions of the test: L = 48, g adapted (so as to
minimize |w|), ¢q variable, cp = -2, dt = 0.2, pmax = 96 (c.f. § A4.2. for information
about the numerical procedure). Different stages are obtained:

“i1: ¢4 =-0.500 (cg =-1.77): a stable chevron.

«i2: ¢4 =-0.300 (cg =-1.59): a stable chevron; oscillations show up during the
transient, but are eventually damped.

«i3:¢cq =-0.175 (cg =-1.46): an oscillating chevron; oscillations acquire a finite
amplitude (greater near the phase shock), and phase singularities (dislocations)
show up during the transient.

Yi4:cq =-0.120 (cg =-1.41): a broken chevron, with two permanent internal
nodes; the central cell and the lateral cells have distinct frequencies.

«i5: ¢4 =-0.100 (cq =-1.38): split wake. The central cell and the lateral cells are
chevrons, all with the same frequency. Two neighbouring cells, separated by a
node, have opposite phases (repulsive lock-in).

Each stage of the instability development (except stage i1, that is already
very well known) is illustrated by the following representations:

. Lines real(A(t, z)exp(i 0.5 t)) = 0, simulating a flow visualization (HT 03, HT 04,
HT 05, HT 06).



-39-

* Records t — Ri(t, z), standing for velocity traces (NUM 15, NUM 16,' NUM 17,
NUM 18).
* (9, R, w)(z) at some given t, representative of a symmetrical asymptotic state

(NUM 19, NUM 20, NUM 21, NUM 22).
* Grey tone drawing of real(A(t, z)), closer to the mathematical reality, and
showing the development of phase singularities (HT 07, HT 10, HT 11, HT 12).

5.2.2. Comparison with the stability of plane waves

The linear analysis of plane wave stability was performed by Kuramoto
(ref.). | recall parts of the result (where misprints have been corrected):
1+ 1f 1+ cqcp < 0, then all plane waves are unstable, at least with respect to high
wave-length perturbations.

2+ In the opposite case, plane waves with

jal > g = (1 + 2(1+¢p2)/(14¢4 cp)) 172 (1)

are linearly unstable with respect to high wave-length perturbations. High wave-
number plane waves, as well as high wave-number chevrons, are more likely to
be unstable. For a given chevron, | call tangent plane wave the plane wave with
the same wave-number. | want to compare the stability of the chevron with the
stability of its tangent plane wave.

For each stage i1 to i5, | compute g given by (1) and determine
numerically the selected wave number q.,. Except in stage i1, q., > qgl- the
tangent plane wave becomes unstable between stage i1 and stage i2. But Qe is
not very relevant, because it concerns the linear stability of a plane wave
submitted to high wave-length perturbations, whereas | am interested in the (non-
linear) stability of a plane wave section, submitted to finite wave-length
perturbations (a z-sinusoidal perturbation cannot develop if its wave-length is
higher than L). Consequently, | enquire numerically the stability of plane waves
(wave-number g, wave-length 1), in a periodic medium of size 2 A (that is about
the length of a chevron plane wave section, with a typical q = 0.5); stability is
obtained if (and only if) q < g¢. The three quantities q.., Qc|» Ac are plotted versus
¢4y on NUM 23. The result confirms that the chevron instability resembles the
tangent plane wave instability, apart from (stabilizing) finite length effects.

The plane wave quasi-linear stability has not yet been investigated
theoretically. But the most unstable mode seems governed by a Landau equation

(the third one!), with c,”, I,”. The transition (stable chevron — oscillating chevron)
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corresponds to o, becoming positive, while the transition (oscillating chevron —
broken chevron) is a subcritical bifurcation, occurring when the oscillation
amplitude exceeds a critical value. The temporal evolution of an unstable plane
wave appears on the example HT 21: the asymptotic solution is an other plane
wave (with a lower wave-number).

5.2.3. The effect of aspect ratio variation

The stable chevron is independent of the (provided high) aspect ratio; this
property must be checked on the broken chevron (stage i4). By studying
numerical examples, | have recognized the following scenario, valid at least for
most (cq, Co) in the unstable region, not too far from the stability boundary, and
not too far from experimental values.

In agreement with the quasi-linear stability analysis of § 3. and experiments
of § 4.1., the asymptotic solution of GLCKO is t-periodic for L small enough,;

consequently, a critical length L(z)(c1 , Co) exists, under which the broken chevron
internal nodes disappear. In the numerical examples, L(z)(c1 ,Co) » Az(cq, Cp), SO
that, for L slightly lower than L(2), the pattern is an oscillating chevron. Using the
remark of § 2.3., GLCK applies with boundary conditions taken at arbitrary nodes,
in particular, the internal nodes. Therefore, for example, the distance L(1)
between internal nodes at L = L(2) obeys
r<L(1 )K(c1 ,Co) < L(Z)K(c1 ,Co) - 21 (1)
When increasing L, the lateral cells keep roughly the same length (L(2)-
L(1))/2. The central cell, with length L-(L(z)-L“)), soon saturates, producing a
chevron, itself unstable when its length is greater than L(2); a “Russian doll”

cascade is started. For N > 3, | define L(N) as the length above which the N-th
node with z > 0 appears (including the external node). | obtain, for all N 2 1:

LIN+1)L(N) = L (2)..(1) (2)
and by recurrence on N:
LIN)-L() = (N-1) (L)-L(1)) for N > 1 (3)

If L > &, then the number of nodes (with z > 0) is simply
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L - L™y, ¢0)

N(L, cq,cp) = 1+int (
L@ (cy, c2)-LM(cy, ) (4)

The case (cq,Co) = (-0.12, -2) is illustrated by HT 05, HT 09, HT 11, HT 12,
HT 13, HT 14, HT 15, HT 16, HT 17, HT 18, HT 19, HT 20. Some other useful
results are, with (cq, ¢, ¢o) = (-1.41,-0.12, -2), dt = 0.2, dz = 0.5:
L)y ~13,33 < L)y < 36,60 < L) < 96, N =6 at Ly = 240
Practically, if L = L(3), the internal nodes have an erratic motion and disappear

intermittently, so that L(3) cannot be determined precisely. The size of lateral cells

is not really constant: lateral cells are dissymmetrical chevrons, evolving
continuously while increasing L from a plane wave section to a symmetrical
chevron. More precisely, all plane wave sections are shorter than 10 Kuramoto
units, while the total length of a lateral cell is 10, 12, 16, 19 Kuramoto units for Lk

= 33, 48, 60, 240. Consequently, the L(N)s are underestimated by (1).
But this does not deny the conclusion that a variation of Lk, as well as a

variation of (c4, ¢»), can produce a variation of N. Which process is involved in
Williamson’s transition must be inquired.

5.2.4. Comparison with experiments

Variable L, constant Re < Re

Williamson did not me‘rI:Ition that the broken chevron can be suppressed by
decreasing the length, although this property seems nearly unavoidable. He did
not mention either the split wake (stage i5). He only observed the broken chevron
(stage i4). This was compatible with the GLCKO model if the experiments were

performed with

L)l(c1, ca)(Re)] < L(Re) « L®)y{(cy, cp)(Re)] (1)

in a neighbourhood of Rey (i.e. an interval ]Re, Re’[ containing Rey)
Williamson'’s range of Lgwas

70 <Lg< 240
With Re,, =64, 1 =32 vand Reg = 49, (ur/csr)V2 = 3.27d and the range of L is
21 <Ly <73 (2)

The observation of constant N = 2 below Re,, implies

L) <21 <73 « LB (3)
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Constant L. variable Re

| consider an experimental sequence where Re decreases at constant Lr
from above to below Re,,. Above Rey, a stable chevron (stage i1 and stage i2) is
observed. Stage i3, not easy to distinguish from the stable chevron, is not
explicitly reported, although it bears a pleasant resemblance with the fig. 7 of
Williamson (ref. 2): in both cases, the amplitude of oscillation is stronger near the
phase shock, and the isophases of oscillation form an other chevron, pointing
towards the direction opposite to that of the basic chevron! Below Re,, the
broken chevron (stage i4) is observed.

Williamson’s transition consists in a variation of the number of nodes,
caused by a variation of either Lk or (cq, C2), as stated in § 5.2.3.. Let me
examine the hypothesis: “in a neighbourhood of Rey, (cq, cp) stays in the
unstable region”. It implies that the transition is caused by the variation of L,

more precisely, the change of sign of Lk(Re) - L(Z)K[(c1 , co)(Re)]. The threshold
should depend on Ly and, as Lk increases with Re, the broken chevron should
be obtained above the threshold. Since those conclusions are wrong, the
hypothesis is false.

Thus, (c1, co)(Re) moves from the unstable region to the stable region when
Re increases. LR is such as (1) holds, in a (fortunately wide) neighbourhood of
Rey. A sensitive determination of the experimental value of (¢1,co)(Rey) = (C1w
Coy) is provided by intersecting the stability boundary of NUM 14 and the straight
line ¢q-co = 2.7 (resulting from § 4.1.). Actually, this'cannot be done accurately on -
NUM 14, because the intersection lies in an area where the numerical precision
is poor. Therefore, | have studied the line cq-co = 2.7 separately, with an
improved precision: L = 48, ¢ adapted so as |o| < 0.01, dt =0.2,dz = 0.5, and |
get
-0.55 < Cyyy < -0.5 | (4)
-3.25 <oy <-3.2 (5)
(4) and (5) are indeed not far from the results of § 4.1 4..

With (cq, ¢1, C) = (-2.3, -0.45, -3.2), the selected wave number (obtained
with & « Lx « L(@)k) is gn(-0.45, -3.2) = 0.57, with a pulsation @ = 0.007.
Moreover,

30 < L(2)«(-0.45, -3.2) < 33 (6)
and L(3) cannot be determined, because internal nodes move and disappear

randomly. (6) disagrees with L(2)K < 21 required by (3).
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6. Conclusion
6.1. Looking back
6.1.1. Solution of the GLCKO model

The mathematical study of the solution were presented along with a non-
trivial analysis of experiments, that could trouble a non-specialist reader. | give a
recollection of mathematical features, without the experimental background. The
result is the simplest example ever of extended system non-linear stability
analysis.

The GLCKO model consists of the GLCK equation (3.1.$3) and no-
oscillation boundary conditions. The three external parameters are C1, Cp, Of
order unity, and L, length of the definition interval. The unicity and existence of a
t-sinusoidal solution are proposed:; it is an even function of z and therefore is
called even mode.

The usual quasi-linear stability theory is applied to GLCKO: small amplitude
random noise is assumed at t = 0, and the time evolution is inquired. The
linearized problem is diagonal in the Fourier space; the number of linearly

unstable modes is int(L/r). For Lk — =%, the single linearly unstable mode is
governed by a Landau equation, easily derived from GLCK.

If 21 < Lk « L(Z)K(c1, Cp), linearly unstable modes are either damped or
entrained by non-linear effects, according to their parities; no distinct frequency
appears, and the asymptotic solution is the even mode. If 21 « Lk « L(Z)K, the

even mode is chevron-shaped: it is made of two symmetrical oblique plane wave
sections, with wave numbers + J-.(C1, Co) independent of L, connecting smoothly
through a symmetrical steady phase shock. During the transient, after a duration
of order unity, a parallel plane wave section appears, except near the
boundaries, where it is replaced by oblique plane wave sections. The connection
areas are phase shocks moving inwards at speed JwlC1-Co|, and eventually
colliding with each other at mid-span, establishing the asymptotic even mode.
Any (cq, ¢p) in the stable region yields a t-periodic asymptotic solution for all

L: L(z)(c1 , Co) = 0. Conversely, any (c1,Cp) in the unstable region yields a non t-
periodic asymptotic solution for some L: L(2) is finite (e.g. L(2)K(-O.12, -2) < 36).
This instability is not very different from that of the plane wave with wave number

J.(C1, C2), and develops when q., is too high. When L — L(2)-, the chevron
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oscillates stronger and stronger, and breaks at L = L(2), where, by definition, two
internal nodes appear, separated by L(1). Between them, the central cell

develops an even mode; its length increases with L, up to L(2), where it breaks,
and so on: the same process is repeated indefinitely. The unstable region is
roughly identical to, but distinct from the phase diffusion instability region,
1+cqco<0.

The effect of varying (c1, Co) at constant L can be easily deduced from the
last description: if L is greater than L(2) when (cq,cp) enters the unstable region,

the transition occurs at once: the chevron splits into smaller cells. The span must
be filled with as many lateral cells as possible, and the remaining length, in the

range [L(”, L(2)], is left for the central cell. In numerical examples, lateral cells

are dissymmetrical chevrons, with wave-numbers Q. (on most of the marginal
stability boundary q., = 0.5) and plane wave sections not exceeding a critical
size. The central cell is symmetrical.

6.1.2. Experimental results

A complex amplitude A(t, z) can be associated with the experimental wake
(through the definition (A1.$5), and independently of GL). The even part of A,
noted At(t, z), is the even mode; the odd part of A, noted A _t(t, z), is the odd
mode; the index T recalls that A, is invariant under +T, defined by (3.2.1.$21).
Both modes are t-sinusoidal, corresponding to t-periodic pressure-velocity

fluctuations, and can be written
Z

Ast(t, z) = Ret(2z) expl ij Q:7(2')dZ'+ st ]
0 (1)

While increasing L, each mode shows

- Linear properties: growth rate, threshold, linear pulsation, shape.

« Quasi-linear properties: saturating global amplitude and pulsation, without
major shape distortion.

- Highly non-linear properties: shape and pulsation have highly non-linear limits

when L — oo,

[he even mode

A quantitative agreement is proven between the near threshold
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approximations of § 3.3.1. and experiments of § 4.1.. The even mode near the

threshold is mode (Sq, o). Although not exotic, this pattern is very useful,
because:

* It legitimates the GLCKO model, in particular, the operator 822.

* It gives access to (cq, ¢»).

Highly non-linear properties: a qualitative agreement is obtained between,
on the one hand, the far from threshold approximation of § 3.3.2., the transient of
§ 3.4., the instability of § 5.2., and, on the other hand, Williamson’s experiments.
A quantitative agreement is not reached: C1-Co is underevaluated by (4.2.$6), g
overevaluated on EXP 19, (5.2.4.83) and (5.2.4.$6) impose contradictory

conditions on L(?-)K. But new experiments, designed on purpose, are necessary
to clarify those points.

The odd mode

The GLCKO model predicts some linear properties (threshold and shape) of

the odd mode, found in experiments of § 5.1.: when Lk — 2n%, AT(t, 2) ~ As(t)

So(z), with a node at z = 0. In most experiments, the global amplitude A, is
clearly non-vanishing, whereas the GLCKO model forecasts Ao =0.

When L — «, A_T tends towards end cells: Ro(z), flattening around the
central node, is negligible in the bulk. The sides of the odd mode, far from each
other, are easily desynchronised by a small dissymmetry, and break apart into
incoherent end cells. Again, the GLCKO model forecasts A_1 = 0.

In some experiments, however, the odd mode can be suppressed (for Re <
Ren,) by reducing the fetch (distance between the upstream edge of the end plate
and the obstacle). This property shows that the existence of the odd mode is due
to the flow near the ends, that escapes the GL model, because it is not weakly 3D
and cannot be approximated by a field of local plane wakes.

The fully 3D flow near a node

Near a node, the fluctuating velocity field, before going to zero, becomes
fully (and awfully) 3D, and cannot be determined by the GL model: in particular,
vortices from one row connect with vortices from the other row. The vorticity field

obeys V.a(t, r) = 0, while there is no such relation for A(t, z).

Fortunately, the GLCKO mode! reproduces the remote effect of external
nodes, and accounts for the broken chevron. Thus, weakly 3D effects are
predicted, even if the fully 3D details of the flow about the nodes are lost. One
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could object that the end cell nodes do not appear in the GLO model; the reason
is probably not much the 3D complexity of this flow, but, more trivially, the fact that
GL does not allow for the particular stability properties of the flow near the ends.

6.1.3. Historical conclusion (reference to other papers)

Tritton’s original idea about two shedding regimes for the plane wake was
wrong. Different frequencies are always the sign of a 3D cell structure, with
dislocations. Gaster (ref.) had first the idea of modeling the wake by a field of
coupled (Van der Pol) oscillators, but, he did not push his idea very far.

He also missed the end effect, ignored until Slaouti and Gerrard (ref.),
Gerich and Eckelmann (ref.) laid emphasis on it. They promoted a new
experimental attitude: before them, some parts of the problem were
overshadowed, under fallacious grounds: for example, because the aspect ratio
was “very high”, it was taken for granted that the flow was 2D; after them, it was
clear that no detail of the flow could be neglected a priori, and that the 2D
schemes had to be dropped once and for all.

Van Atta and Gharib had a very high aspect ratio obstacle (L = 3500), but,
as they did not investigate the 3D structure, it is difficult to conclude about their
suggestion, quoted in § 1.1..

Williamson proved that substantial 3D effects remained without non-
uniformities nor vibrations: they were caused by the no-oscillation boundary
conditions only. This situation was very appropriate for the present purpose,
because the number of mathematical external parameters was reduced to a
minimum (three), while 3D effects were still non trivial.

Amplitude equations were extensively applied to closed flows, mainly
convection driven by buoyancy and the rotating couette flow. Generally, internal
open flows (pipe or plane Poiseuille) have subcritical transitions, that escape a
description by amplitude equations. On the contrary, external open flows often
have supercritical transitions. Absolutely unstable flows deserve special
attention: they are governed by autonomous equations, and the instability is
widely independent of the upstream noise. An other example is the hot jet, that,
curiously, has about the same constant ¢, than the cylinder wake (Raghu and
Monkewitz (ref.)).

The literature on wake experiments and dynamical reduction of
hydrodynamical instability is so vast that | certainly miss a lot of enlightening
papers (especially on the second subject).
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6.2. Looking forth

6.2.1. New applications of the GL model

Other effects in a uniform flow

* Yaw: after Ramberg (ref.), yaw increases d., and a transition occurs, that is
qualitatively similar to the plane wave instability of HT 21.

* Forcing by vibrations (Detemple-Laacke (ref.)).

* Instability of the 2D basic flow for Re > 180: periodic boundary conditions can be
used to simulate an infinite medium. GL can be modified so that the first unstable
mode has a non-zero wave-number.

Non-uniform flows

The GL equation (2.3.$2) applies to weakly 3D flows: e.g., the wake of a
tapered cone (Gaster (ref. 2)), the wake of a revolution body with a periodic
diameter variation d(z) (by analogy with the wake of a corrugated flat plate,
studied by Meiburg and Lasheras (ref.)), etc.

Even when the GL model is a priori irrelevant, it can provide useful ideas.
For example, introducing an EPBL velocity profile in GLVO generally results in an
increase of q.,, and an easier release of the chevron instability. An other example
is the wake of a “bi-cylinder” (a revolution body with a diameter step variation).

6.2.2. Theoretical advances

: ” . derivation mpli

The slow coordinates of the 3D wake are x (quasi-parallel flow) and z
(weakly 3D flow). Assuming a 2D problem is equivalent to freezing the z-
variation; then, the local and global stability properties are linked by an amplitude
equation, with 9, studied by Chomaz, Huerre, Redekopp (ref.). It should be
possible as well to freeze the x-variation by assuming a parallel flow, and then
link the local and global stability properties along z by an amplitude equation,
with d,, indeed GL. A rigorous relationship between the complex A and the
pressure-velocity field should also be derived.

Another way is to consider that the slow coordinates are x and z: the
variation is slower along x and z than along y. The amplitude equation involves
dy, 9. Rossi, Huerre, Redekopp (ref.) have studied such an equation, but | don't
know if they derived it from the Navier-Stokes equations.
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“Downstream” advances: solution of the GL model

The GLCKO model deserves to be solved thoroughly: many fundamental
ideas find their easiest application on this example, that is almost a mathemetical
paradise, compared with other non-linear problems. The occurrence of subcritical
transitions for the chevron should be confirmed. In particular, the mechanical
analogy of § 3.2., and the non-linear stability analysis of plane waves should be
pushed further.

There might be some interesting mathematical work on the GLVKO model,

particularly with a uniform shear on o(z).

6.2.3. Experimental suggestions

6.2.3.1. What experiments?

The linear stability properties of the wake are still an unexhausted mine of
information, accessible through subcritical forcing or transients.

The interest of subcritical forcing is that any linear mode can be selectively
excited. The drawback is that only the subcritical properties are obtained and the
extrapolation of supercritical properties is hazardous.

Above the threshold, transients are obtained by turning the instability off and
on, using different artifacts, such as forcing, negative feedback, base bleeding.
The linear growth rate and frequency must be the same everywhere in the 3D
field (this has not yet been clearly demonstrated!).

Non-linear grogerties

Experiments on the even mode

« Test of (3.3.1.$20) and (3.3.1.$21), about the quasi-linear behaviour of q(z) and
R(z). Remark: the non-linear saturation of the even mode forecast by the GLCKO
model cannot be observed if the odd mode appears (Lk > 27).

- Direct measurement of the phase diffusion coefficient 1+c4Cp, by observing the
relaxation of an impulse phase perturbation (at high L)

« The subcriticality of the transition (stable chevron — broken chevron) could be

tested by looking for hysteresis in an experiment (and a numerical simulation)
where L is a slowly varying function of time (at high L)
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, ,

The fundamental question is to find why the odd mode (consisting in mode
(Sp, 02) and end cells) appears. The evolution of the global amplitude Ax(t) with
Re, L, and the end plate fetch F must be inquired.

The feeding of the odd mode by the flow near the end could be represented
by an forcing in the GL equation. As Slaouti and Gerrard (ref.) and Gerich and
Eckelmann (ref.) found end cells with various end conditions, the feeding process
seems widely independent of the details of the flow near the ends.

An other question is how and why mode (So, 09) splits apart into end cells
(when increasing L at constant Re).

6.2.3.2. What experimental arrangement?

Two probes, one of them mobile, are necessary for phase measurements:
using a row of hot wires allows simultaneous measurements at different points.
LDA allows absolute non intrusive velocity measurements, but is expensive, and
difficult near the end plates and the recirculating area. Base pressure
measurements are also non-intrusive, and possible where LDA is not possible.
Since a great number of measurements have to be performed, automatism and
data-processing must be very well engineered.

Desirable features for a wind tunnel are a variable Re (30 < Re < 300), and
variable end plate size and position (5 < L/d < 150 at least). Very useful are a
wake instability control device and smoke visualization (that should be performed
simultaneously with velocity recording). Watching obstacle vibrations is a wise
precaution. For technical reasons (elastic properties, mechanical engineering), it
is easier to use obstacle diameters greater than 0.2 cm. If different diameters are
used, hydrodynamical similarity is not automatically respected (at least, because
the size of the wind tunnel cannot be changed): it is wiser, and technically
simpler, to keep a single cylinder with d = 0.2 cm. Then, the minimum z-size of the
wind tunnel is 33 cm, and a suitable upstream velocity range in air is 25 cm/s <
Vo < 225 cm/s. A free stream non-uniformity of +5%. and turbulence level of 5%
seem satisfactory.

6.2.3.3. Towards a systematic validation of the GL model

In the present work, the determination of mathematical external parameters
(cq, cp) was partly ad hoc and | resorted to experiments performed in different
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conditions and different aims; thus, building a clear picture was not easy. For any
given physical external parameters Lr and Re, a systematic validation of GLCKO
requires:

« Determining the experimental values of oy, iy and €g, C1,C2 (through transients
or quasi-linear conditions), with an increased precision (+0.05 on ¢4 and c»).

« Solving the GLCKO model with (Lk, ¢4, Cp) deduced from experiments.

« Comparing the features of the real wake and the model solution (nodes, phase,
amplitude modulus, pulsation).

6.3. About the nature and the interest of the present approach

On the one hand, a Ginzburg-Landau model is only a development of
perturbation equations in powers of an external parameter near a critical value,
and certainly not a physical explanation. Like all developments, it breaks down
before non-analyticity. Moreover, in the present case, the validity of the GL
equation is not mathematically proven, and experiments are not exhaustive.

On the other hand, the GLO model is the first model ever to reproduce a
single 3D feature of a wake. No simpler model can be proposed (otherwise non-
linearity or three-dimensionality are lost), and yet, all weakly 3D features are
reproduced, just by allowing for
1+ oscillating units (local wakes);

2. weak three-dimensionality or weak coupling;
3¢ no-oscillation boundary conditions.

In my opinion, the fluid mechanics nature of oscillators is not involved:
weakly 3D effects are organization phenomena, likely to appear in quite different
situations where the last three point are encountered. As an extreme example,
the chevron is a common property of a cylinder wake as well as the flight of ducks
in formation (where “no-duck” boundary conditions occur!). As usual in nature,
weaker interaction motion can be found with less physical knowledge. For
example, the molecular structure of matter is useless to understand fluid
mechanics, and, in the present case, fluid mechanics seems useless to
understand weakly 3D effects in the wake of bluff bedies.

Of course, this approach breaks down when interaction is stronger: then
“microscopic” properties are involved (e.g., in the present problem, the vicinity of
a dislocation). Quite fortunately, however, the GL model accounts for the transition

(chevron — broken chevron).
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Notes

A very interesting paper has been recently published by Kdnig, Eisenlohr
and Eckelmann (ref.), concerning high aspect ratio 3D effects, but | had no time to
compare it with the present work, as | did with Williamson’s paper.

The experiments of Lee and Budwig (ref.), published in February 1991, are
very close to those of § 4.1..
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A1. Definition of the complex amplitude A

The aim is not to derive the GL equation from the Navier-Stokes equations,
but to give a link between the complex amplitude A and the pressure-velocity
field, that is the only observable quantity.

Tl l litude in the Land el for the pl l
The Bénard-von Karman instability grows from those small fluctuations
located in an area just downstream the obstacle, called wave maker, where the
local velocity profiles are absolutely unstable. In the Landau model, the wave
maker is considered as a single oscillator represented by a complex number A.
Thus, the fluid oscillation at (x, y) = (5d, 0) is enough to characterize the whole
wave maker.
The pressure-velocity field is V = (P, Vy Vy, V) (Re, t, x, y). The complex
amplitude A is some complex function of Re and t such as
2 V(Re, t, x =5d,y) = f(Re, A(t), y/d) (1)

The function f is then expanded in powers of Aand A”:

fRe, A, y)=), > fi .k (Re,y) A Ak
n ki+ks =n (2)

As Vs real,

fk2, k1 =fki, k2 )
fog/2 is the basic flow. The (non-zero) Vy component of f44(Re, 0) is set to unity
by convention. If A « V__, it is reasonable to think that A obeys a Landau equation:

Ay=ocA-1|Al2A (4)

(f1 0, ©) is an unstable mode of the basic flow linear stability analysis. The
terms of order n > 1 in (2) are responsible for non-linear effects, such as a the
distortion of the time-average flow and the generation of harmonics. An observer
located on the line y = 0, and sensitive to V4 only, cannot distinguish a vortex
shed at y > 0 from a vortex shed at y < 0; therefore, the V, component of f10(Re,
0) is zero.
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The complex amplitude in the GL model for the 3D wake

Re and d may now be (slowly varying) functions of z. The pressure-velocity
field is V(Re, t, X, ¥, ). The state of the wave maker is still represented by A, but A
is allowed to vary with z:
2 V({t, x = 5d(2), ¥, ) = f(Re(2), A(t, 2), y/d(z)) (5)
The line (x, y, z) = (5d(z), 0, z) is taken as a representative of the whole wave
maker. (The function f is the same as in the plane case.)

The GL equation is obtained by adding a diffusive coupling to the Landau
equation:

3y A=o(2)A+pd2, A-I(z)|AI2A (6)
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A2. Streamwise description of the wake

The GLCKO model describes the state of the wave maker only, that is some
finite area in the streamwise direction: A(t, z) gives the shape of nascent vortices
only. The downstream evolution is not simple, especially in a shear flow.
However, flow visualization suggests that a simple translation rule apply in the
case of uniform V_(z) and d(z): each dye filament is just translated downstream
with a (phase) velocity c.

In the case of a t-periodic state, with t-period T, the transiation rule is
equivalent to the invariance under the translation cT in the downstream direction.
This can be checked on various photographs, published by Berger (ref.), Gerrard
(ref.). The rule even holds for the 3D transient appearing on fig.10 of Williamson
(ref. 2). Indeed, the front velocity given by Williamson implies that the corner on a
given dye filament keeps the same z while being advected; Williamson gave me
confirmation of this fact.

This translation rule deserves a few remarks:
1+ Dye filaments are somehow distorted while being advected: they develop
oscillations and one corner easily gives way to two corners (Williamson (ref. 2)).
2* When the wake consists of many cells, the rule may apply to each cell, with its
own celerity.
3+ One should be aware that dye concentration is not the best measurement of
the vorticity field: dye wraps around the vortices cores, forming filaments that
subsist even if the vortices were dead. They are partly a record of the wave maker
state, being translated downstream: so to speak, the visualization device acts
partly as a “plotter” of the wave maker state. Thus, the translation rule may work
worse for the vorticity filaments than for the dye filaments.
4+ The translation rule is also a consequence of the experimental interest and

constraints: the typical (viscous) time of evolution Tg for a single vortex is greater,

by a factor of order Re, than the (convective) time available for its observation To

(the time spent by the vortex within the observation section of the wind tunnel). A
given vortex, once shed, has not enough time to evolve while being observed.
The unstable flow is thus approximated by a progressive wave:

Vit x, ¥, 2) = V(t-(x-5d)/c, 5d, y, z) (1)
Using definition (A1.$5) :
2V(t, x,y, z) = f(A(t-(x-5d)/c, z), y) (2)

t is equivalent to -x/c. This property can be used to interpret graphic
representations of A(t, z) not only as the time-evolution of the wave maker, but
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also as a photograph of the whole wake.

Demonstration of the symmetry law

See DRA 04.

Hypothesis: two stable semi-infinite vortex streets are connected smoothly
(without dislocation), with all connection points lying in the same plane; the
motion of this plane, relative to the fluid at rest, is a translation. A weak viscosity is

allowed, so that the circulation k, wave number K, and width b do not vary much

in space.
The demonstration is performed in the frame of the fluid at rest. The

following results are used, for a 2D stable vortex street characterized by «, k, b:
« The pulsation wis given by @ =1 (x, K, b).
« The stability is obtained when g (x,k,b) =0.

f and g need not be written down for the present purpose.
The streets are labeled 0 and 1. Far enough from the connection plane,
each street is identical to a 2D vortex street. Each vortex 0 is connected to a

vortex 1. Since circulation is the same everywhere around a vorticity pipe, xqg =
x4 = x. Equating the phases of the waves 0 and 1 for all time on the translating
connection plane gives wg = @1 = ® . Thus, a set of two equations is obtained:
f(x, kg, bg) =1 (x, kq, bq)

g (x,kq,bq)=0

An obvious solution for the unknown (kq, bq) is (kq, b1) = (kg, bp)- | admit that it is
the only one. Thus, (x1, ky, b1) = (xg, Ko, bg). and the connection plane is a

symmetry plane of the flow .

During the chevron transient (DRA 04, § 3.4. and Williamson (ref. 2)), the
angle 8 between the two waves does is steady, meaning that the connection
plane is translating in the frame of the fluid at rest. The late result applies, if one

neglects the influence of the obstacle on the vortex streets (correct if x > 10 d) and
the direct influence of the ends.
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A3. Useful results:
the Landau equation, the phase diffusion equation

A3.1. Solution of the Landau equation

A; = (op+ic)) A - (I+ik) |Al2A (1)
with o, > 0, I > 0 (to ensure saturation), oj, I; real.

Introducing A = R exp(i¢), R > 0, in (1) leads to

Ri=o,R- I, R3 (2)
@y =o; - |; R2 (3)
The solution of (2) is:

R()2- Iy /or = exp(-2 o, 1) [R(0)2- I, /o] (4)
The asymptotic solution is sinusoidal:

A(t) = (o 1r)172 exp(i o (i/cy - /1) 1) (5)

There is a non-linear shift on the pulsation.
A3.2. The phase diffusion equation
This equation was derived in a more general context by Kuramoto (ref.), for

a field of coupled oscillators. Here is an elementary demonstration in the special
case of the GL equation :

At=(1+iCg) A + (T14icy) Agz - (14 Co) |A|2A (1)
With

A(t, z) = R(t, 2) exp(i(co-Co)t+id(t, z)) (2)
the real and imaginary parts of (1) are

Ri=R-R3+(R,,-Re,2) - ¢y (2R,®,+RD,,) (3)
Ry = co(R-R3) + ¢y (R;-RD,2) + (2R,®,+RD, ) (4)
After linear combinations:

Ry=R-R3 + (Ry,-R®,2) - ¢ (2R,®,+Rd,,) (5)
“C2Rt+ R®y = (¢1-Co) (Rzz-RD,2) + (14¢4cp) (2R,D,+RdD,,) (6)

I study the following expansion, for some small positive € :
R(t, z) = 1 + e Ry(T, 2) + O(e2) (7)

where T =etand Z = Ve z are the slow variables. Looking for ® under the form
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d(t, 2) = Dg(T, 2) + Ofe)

(1) reduces to

g = -(01-Cp) Pgz? + (1+¢1) PpzZ

2R =- ®gz? - 102z

In this approximation, R4 is “ slaved " by the phase ®@g.
A solution of (9) is

(T, 2) = -‘[;i in( ch(B(Z+2aBT)) )+ aZ + B(a*+bT
o

a and b are two real arbitrary constants,
o =1+C4Cp, B =-(Cy-Co)
For Z+2aBT — + =, ® represents two plane wave sections, with

®5 = at b, & = B(atb)?

(1)

(12)

(13)

The solution (11) shows the transition from a plane wave section to an other,

within an area of width
AZ =20/(Bb)

(14)

As AZ is small (before the size of the definition interval), the transition area is

conventionally called a phase shock (even though it is continuous). Remarkably,

B has opposite signs for chemical waves (Kuramoto (ref.)) and vortex shedding (§

3.3.1). If o is negative, the diffusive coupling enhances instability, yielding

solutions incompatible with the assumption of slow-variables. The phase

diffusion equation is relevant only if:

a>0

(15)
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A4. Experimental arrangement and numerical method
A4.1. Experimental arrangement

The wind tunnel is made of a contraction supplying a 10 cm square section
cylindrical pipe. In former experiments (Mathis (ref.), Provansal (ref. 1)), the end
plates would be the walls of the wind tunnel: EPBLs grew along F = 15 cm (the
distance between the obstacle and the pipe inlet). The obstacle length was thus L
= 10 cm and different diameters d were available.

In this configuration, increasing LR at constant Re required an upstream
velocity increase, involving changes in the basic flow (e.g. the EPBLs). The
blockage effect was very important for the greatest diameters (d > 0.7 cm), and
not identical for all obstacles. Testing the GLCKO model was very difficult,
because Lk could not be changed continuously and independently of (cq, ¢»).

| used a different configuration, with mobile end plates and constant d =1.6
mm. The end plates were (ideally) half-planes defined by (x > -F and z = + L/2),
with F = 20 mm. While moving end plates without modifying the flow input, the
EPBLs, the (small) blockage effect, the local basic flows, and therefore (cq, Co),
remained unchanged, while Lk varied. Since cell patterns were sensitive to
dissymmetry, the overall mechanical setup was preferably kept symmetrical.

At best, the turbulence level, including the measurement noise, was 5 %o
and the flow non-uniformity (without obstacle) was +5 %. in the bulk. | had
removed a grid at the inlet of the cylindrical pipe.

A single, mobile Laser Doppler Anemometry measurement point recorded
both upstream velocity and Vy fluctuations (but not simultaneously). The
obstacles were stiff aluminum rods, that could not be distorted by the air flow; they
were screwed at both ends to the plexiglass walls. In a casual experiment, the
rod was tied by one end only, and produced a frequency discontinuity, that
disappeared when both ends were tied, meaning that the rod was allowed to
oscillate due to the wall flexibility!

A4.2. Numerical method

The GL equation (2.3.$2) is solved with

« Given complex coefficients o(z), (z), I(z). Assuming uniform coefficients does
not make the numerical problem easier. Of course, accuracy is better when using
Kuramoto rescaling (§ 3.1.).
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« Boundary conditions: at z + L/2, either no-oscillation boundary conditions (e =

0), or periodic boundary conditions (e = 1).

« Initial conditions: when simulating a real experiment, | use random noise as

initial conditions, with a turbulence level (relative random mean square) similar to

that of the wind tunnel. Of ourse, in general, the choice of initial conditions is free.
A time step dt and a space step dz are chosen. | write (n, p) instead of (n dt,

pdz-L/2), where n =0, ...,nmaxandp =0, ..., pmax = int(L/dz). GL is discretized

with an error O(dt2+dz2):

Ar(n+1, p) = dt115 (A(n+1, p) - 2A(n, p) + 0.5 A(n-1, p)) + O(dt2) (1)
A,5(n+1, p) = dz'2 (A(n+1, p+1) - 2A(n+1, p) + A(n+1, p-1) + 0(dz2) (2)
GL is linearized using

|A(n+1, p) |2 A(n+1, p) = |2A(n, p)-A(n-1, p) |2 A(n+1, p) + O(dt?) (3)
With

rn+1, p) / dz2 = dt-1 1.5 - o(p) + I(p) |2A(n, p)-A(n-1, p) |2 + dz22p(p)  (4)
s(n+1, p) /dz2 = at™ (2A(n, p) - 0.5 A(n-1, p)) (5)

GL takes the form of a system of linear equations where the unknown is A(n+1, .),
and the coefficients are pu(p), and r(n+1, .), s(n+1, .), functions of A(n, .), A(n-1, .):

-u(p) A(n+1, p-1) + r(n+1, p) A(n+1, p) -p(p) A(n+1, p+1) = s(n+1, p) (6)
forp = 1-e, ..., pmax -1 (if e = 1, | consider that p is defined modulo pmax).

If e =0, then A(n+1, 0) = A(n+1, pmax) = 0 and
r(1) -u(1) 0 e 0 A1) s(1)

-(2) r(2) -(2) . :
0 -u(3) A ‘. 0 x . =
: .. . r(pmax-2) -p(pmax-2) : :
0 0 -u(pmax-1) r(pmax-1) A(pmax-1) s(pmax-1)

If e =1, then A(n+1, 0) = A(n+1, pmax) and

r(0) -1(0) 0 1(0) A(0) s(0)
(1) r(1) (1) ' : :

0 1(2) 3
. . r(pmax-2) -p(pmax-2) : :
-p(pmax-1) 0 -u(pmax-1) r(pmax-1) | \ A(pmax-1) s(pmax-1)
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With P = pmax-2+e, both cases are summarized by

o bo 0 ebg a_O S_O
by ry by -, . :
0 b2 . - 0 |X . |=
: P2 bp :
ebp 0 bpa rpg ap-1 Sp-1 (7)

This system is solved by Gauss elimination with no pivoting, and back-
substitution.
A higher time step can be used if Cp is adapted, i.e. shifted to minimize the z-

maximum modulus of the pulsation @ = dy arg(A(t, z)) (c.f. § 3.1.). With Cq, Co of

order unity, an accurate solution requires dt < 0.5 and dz < 1. FORTRAN77 simple
precision complex arithmetics was used, on a Sun 4/260 work station.
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